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Abstract 

Solar cell performance decreases with increasing temperature, fundamentally owing to increased internal carrier 
recombination rates, caused by increased carrier concentrations. The operating temperature plays a key role in the 
photovoltaic conversion process. Both the electrical efficiency and the power output of a photovoltaic (PV) module 
depend linearly on the operating temperature. The various correlations proposed in the literature represent simplified 
working equations which can be apply to PV modules or PV arrays mounted on free-standing frames, PV-Thermal 
collectors, and building integrated photovoltaic arrays, respectively. The electrical performance is primarily 
influenced by the material of PV used. Numerous correlations for cell temperature which have appeared in the 
literature involve basic environmental variables and numerical parameters which are material or system dependent. In 
this paper, a brief discussion is presented regarding the operating temperature of one-sun commercial grade silicon-
based solar cells/modules and its effect upon the electrical performance of photovoltaic installations. Generally, the 
performance ratio decreases with latitude because of temperature. However, regions with high altitude have higher 
performance ratios due to low temperature, like, southern Andes, Himalaya region, and Antarctica. PV modules with 
less sensitivity to temperature are preferable for the high temperature regions and more responsive to temperature will 
be more effective in the low temperature regions. The geographical distribution of photovoltaic energy potential 
considering the effect of irradiation and ambient temperature on PV system performance is considered. 
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1. Introduction 

The important role of the operating temperature in relation to the electrical efficiency of a photovoltaic 
(PV) device, be it a simple module, a PV/thermal collector or a building-integrated photovoltaic (BIPV) 
array, is well established and documented, as can be seen from the attention it has received by the 
scientific community. There are many correlations expressing Tc, the PV cell temperature, as a function of 
weather variables such as ambient temperature, Ta, local wind speed, Vw, and solar radiation 
flux/irradiance, I(t), with material and system-dependent properties as parameters, e.g., glazing-cover 
transmittance, , etc. An equally large number of correlations expressing the 

 c, can also be retrieved, although many 
of them assume the familiar linear form, differing only in the numerical values of the relevant parameters 
which, as expected, are material and system dependent. With regard to the relevant weather variables, and 
qualitatively speaking, it was found that the PV cell temperature rise over the ambient is extremely 
sensitive to wind speed, less to wind direction, and practically insensitive to the atmospheric temperature 
[1]. On the other hand, it obviously depends strongly on the impinging irradiation, i.e. the solar radiation 
flux on the cell or module. From the mathematical point of view, the correlations for the PV operating 
temperature are either explicit in form, thus giving Tc directly, or they are implicit, i.e. they involve 
variables which themselves depend on Tc. In this last case, an iteration procedure is necessary for the 
relevant calculation. Most of the correlations usually include a reference state and the corresponding 
values of the pertinent variables. 

 
The electrical performance is primarily influenced by the type of PV used. A typical PV module 

converts 6-20% of the incident solar radiation into electricity, depending upon the type of solar cells and 
climatic conditions. The rest of the incident solar radiation is converted into heat, which significantly 
increases the temperature of the PV module and reduces the PV efficiency of the module. This heat can be 
extracted by flowing water/air beneath the PV module using thermal collector, called, photovoltaic 
thermal (PVT) collectors. In practice, only a-Si and crystalline Si have been found in the literature on 
PVT. The higher efficiency of crystalline Si will result in a higher electrical efficiency and a higher 
electrical-to-thermal ratio of the PVT than in the case of a-Si. Tripanagnostopoulos et al. [2] presents 
experimental measurements on PVT-liquid and PVT-air collectors for both a-Si and c-Si. He finds that at 
zero reduced temperature, for his PVT liquid collector, the efficiency of his c-Si prototype is 55% and his 
a-Si prototype 60%, while for his PVT air collector the c-Si prototype is 38% and the a-Si prototype 45%. 
However, the electrical performance for the c-Si modules is 12% and for the a-Si it is 6%. A higher 
thermal yield was also found for a-Si by Ji et al. [3]. However, in other experiments a lower thermal 
efficiency was found for a-Si than for c-Si, Affolter et al. [4, 5] and Platz et al. [6]. Zondag et al. [7] 
compared a conventional PV module, an unglazed PVT module and a glazed PVT module. The average 
annual electrical efficiency was found to be 7.2%, 7.6% and 6.6%, respectively. Chow [8] calculated the 
electrical performance of a thermosyphon PVT collector with the PV at the high end and at the low end of 
the absorber. For the colder low end, he found a 3% higher electrical efficiency. Naveed et al. [9] 
examined a PVT air system in which PV was connected to an unglazed transpired collector. It was found 
that a temperature reduction of 3-9oC resulted in an improved electrical performance, allowing a reduction 
in PV area from 25 to 23 m2. Krauter and Ochs [10] and Krauter [11, 12] have developed an unglazed 
integrated solar home system, in which a PV laminate is connected to a triangular water tank. The tank 

temperature reduction of about 20oC is reported relative to a conventional solar home system, which leads 
to a 9-12% increase in electrical yield, depending on the stratification.  
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2. Temperature dependent electrical efficiency of PV module 

The correlations expressing the PV cell temperature (Tc) as a function of weather variables such as the 
ambient temperature (Ta), local wind speed (Vw), solar radiation (I(t)), material and system dependent 
properties such as, glazing-  The effect of 
temperature on the electrical efficiency of a PV cell/module can be obtained by using fundamental 
equation, 

( )m m m sc ocP I V FF I V                             (1) 

In this equation FF is fill factor, Isc is short circuit current, Voc is open circuit voltage and subscript m 
refers to the maximum power point in the modules I-V curve.  Both the open circuit voltage and the fill 
factor decrease substantially with temperature (as the thermally excited electrons begin to dominate the 
electrical properties of the semi-conductor), while short-circuit current increases, but only slightly, 
Zondag [14]. Thus, the net effect leads to a linear relation in the form 

101 ( ) log ( )refT ref c refc T T I t                            (2) 

Tref t the reference temperature, Tref and at solar radiation 
of 1000 W/m2

ref
properties, having values of about 0.004 K-1 and 0.12, respectively, for crystalline silicon modules, 
Notton et al.[15]. The latter, however, is usually taken as zero, Evans [16], and Eq. (2) reduces to 

1 ( )refT ref c refc T T                            (3) 

which represents the traditional linear expression for the PV electrical efficiency, Evans and Florschuetz 
[17] Tref ref are normally given by the PV manufacturer. However, they can be 

temperatures for a given solar radiation flux, Hart and Raghuraman [18]. The actual value of the 
temperature coefficient, in particular, depends not only on the PV material but on Tref, as well. It is given 
by the ratio 

1
ref

o refT T
                              (4) 

in which To is the (high) temperature at , Garg 
and Agarwal [19]. For crystalline silicon solar cells this temperature is 270oC, Evans and Florschuetz 
[20]. In a number of correlations, the cell/module temperature  which is not readily available  has been 
replaced by TNOCT, i.e., by the nominal operating cell temperature. One such expression is 

( )1
( )

ref a ref NOCT a
NOCT

I tT T T T
I t

                           (5) 

The quantities labelled as NOCT are measured under open-circuit conditions (i.e., with no load attached) 
while operating in the so-called nominal terrestrial environment (NTE), which is defined as follows, 
Stultz and Wen [21]: 
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Global solar flux: 800 W/m2, 
Air temperature: 293.16 K (20oC), 
Average wind speed: 1 m/s, 
Mounting: open rack, tilted normally to the solar noon sun.  
 
Table 1. Evans Florschuetz PV efficiency correlation coefficients, 1 ( )refT ref c refc T T  

 
Tref (oC) Tref ref Comments References 

25 0.15 0.0041 Mono-Si [17] 
28 0.117 0.0038 Average of Sandia and commercial cells [22] 
25 0.11 0.003 Mono-Si [23] 
25 0.13 0.0041 PVT system [24] 
  0.005 PVT system [25] 

20 0.10 0.004 PVT system [26] 
25 0.10 0.0041 PVT system [19] 
20 0.125 0.004 PVT system [27] 
25  0.0026 a-Si [28] 
25 0.13 0.004 Mono-Si [29] 
 0.11 0.004 Poly-Si  
 0.05 0.0011 a-Si  

25 0.178 0.00375 PVT system [30] 
25 0.12 0.0045 Mono-Si [8] 
25 0.097 0.0045 PVT system [7] 
25 0.09 0.0045 PVT system [31] 
25 0.12 0.0045 PVT system [32] 
25 0.12 0.0045 PVT system [33] 
25 0.127 0.0063 PVT system [34] 
25 0.127 unglazed 0.006 PVT system [35] 
25 0.117 glazed 0.0054 PVT system [36] 

average efficiency can be written. The monthly electrical energy output of a PV array can be estimated on 
the basis of the following equation: 

1 ( )ref

ref T
T ref a ref

L

VH
T T

nU
           (6) 

in which the over-bar denotes monthly average quantities, n is the number of hours per day, UL is the 
overall thermal loss coefficient, HT is the monthly average daily insolation on the plane of the array, and 
V is a dimensionless function of such quantities as the sunset angle, the monthly average clearness index, 
and the ratio of the monthly total radiation on the array to that on a horizontal surface, Siegel et al. [37]. 
Temperature coefficient and equations found in the literature for the efficiency of PV cells/modules are 
shown in Tables 1 and 2, respectively. The first table contains values for the parameters of Equation (3), 
as reported by a number of authors, and the second c, including pertinent 
comments for each correlation. On the basis of data listed in Table 1 for Tref = 25o

ref 
ref oC-1. 
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Fig. 1. BIPV mounting induced temperature difference from NOCT as a function of irradiance [55]. 

3. PV potential in the world 

Photovoltaic (PV) electric power generation is a promising technology for generating renewable 
energy from solar irradiation. However, the output of PV is sensitive to its operating conditions, so 
estimating PV potential accurately is a complex problem. Furthermore, given the limited availability of 
data for the entire world, a method that achieves accurate estimates with available data is necessary. Most 
estimates of PV potential use either the power rating method or the energy rating method. The power 
rating method integrates the instantaneous PV power generation over time, thereby accounting for the 
time-dependency of PV output. The main problem of this method is its complexity and data requirements. 
Complete instantaneous weather data is not available globally, so no work has estimated the global PV 
potential by the power rating method. 

 
The energy rating method estimates PV potential by multiplying the total solar irradiation during a 

specific period of time by a performance ratio. The simplicity of the energy rating method and the 
availability of global weather data have enabled researchers to estimate the PV potential for the world, 
and numerous countries. These studies use a constant performance ratio. However, the performance ratio 
actually changes under different operating conditions, especially ambient temperature, which limits the 
accuracy of these studies. Kawajiri et al. [56] have developed a modified energy rating method based on 
the JIS method (JIS C 8907; Japanese industrial standard) that estimates the effect of ambient temperature 
on global PV potential. The method was used to generate a global map of c-Si PV potential and annual 
performance ratio by considering PV systems mounted on a platform above ground and operated under 
direct connection to the grid without any kind of storage such as batteries. 

  
The global distribution of annual total irradiation (Hy) on equator-pointed tilted surfaces obtained by 

summing the monthly total solar irradiation values in the NASA database, which are averages of 22 years 
of data from 1983 to 2005, is shown in Fig. 2 [56]. The global map of annual energy generation potential 
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of c-Si PV systems is shown in Fig. 3. The regions with the largest irradiation values have large PV 
potentials. In particular, the Himalaya and Southern Andes regions have energy potentials of more than 
1800 kWh/kW PV, due to the combination of large irradiation values and low temperatures. The 
Himalayan region is especially attractive because it is near regions with large future energy demands, 
such as China and India. Of course, many problems must be addressed when installing PV systems in 
high altitude regions, such as transporting the PV system and increased need for maintenance due to the 
severe environmental conditions. Several high-altitude PV plants are currently in operation [57]. 
 

 
Fig. 2. Global map of annual total irradiation (Hy) on equator-pointed surfaces tilted at the latitude angle [56]. 
 
 

 
Fig. 3. Global potential map of PV energy generation (Ypy) by c-Si PV module [56]. 
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4. Conclusion 

The operating temperature plays a central role in the photovoltaic conversion process. Both the 
electrical efficiency and, hence, the power output of a PV module depend linearly on the operating 
temperature decreasing with Tc. The numerous correlations for Tc which have appeared in the literature 
apply to freely mounted PV arrays, to PV/thermal collectors, and to BIPV installations, respectively. 
They involve basic environmental variables, while the numerical parameters are not only material 
dependent but also system dependent. Thus, one must be careful in applying a particular expression for 
the operating temperature of a PV module because the available equations have been developed with a 
specific mounting geometry or building integration level in mind. Therefore, the reader is urged to consult 
the original sources when seeking a correlation suitable for a particular application. 
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